For A Reader-Some Martian Information From A Layman

Solar radiation: We live within the envelope of Earth’s electro-magnetic dynamo, protected from the life-destroying short-wave radiation our star is constantly spewing.  Over time (billions of years) this has helped create a relatively stable atmosphere and biosphere; stable enough for the life we know on Earth.

Despite this stability, of course, we know the star-energy we eventually consume as food and water to be scarce as such conditions are coded at the cellular level (and since we’re being depressively realistic, there’s vulcanism, earthquakes, cold, heat, other people, parasites and viruses to contend with). Such facts define us as does the occasional catastrophic event and the eventual catastrophe awaiting each of us.  There’s love, friendship, knowledge, music, hope, beauty and a whole world to explore.

Okay, enough of that for now.

Zero or altered gravity:  On the surface of Earth, we live x units away from a mass ball at the bottom of a gravity well.  In space, we wouldn’t feel this force at all, and on Mars we would feel it about 40%.  What if blood vessels contract/expand or slowly atrophy in zero Gs for reasons yet unknown?  What if this dims your vision slowly, over time, and impairs cognitive functioning, especially during the reproductive process, pregnancy or early childhood?  Wouldn’t you like to know this before it starts happening to you on the six-months-plus journey to Mars?

Once we know about such problems, we can figure out some solutions.

If there is life on Mars (a possibility, still, as of 2019), it’s probably microbial, living on an energy source beneath the surface.  Up top, all that solar radiation has created a toxic layer of perchorates, oxidized, rusted dust and rocks, apparently hostile to life as we know it.

Imagine a place colder than Antarctica, drier than the driest desert, with so little atmosphere the atmosphere’s barely there.  The EM dynamo and envelope petered out long ago.  You look around and see a barren landscape, familiar yet strange; alien.

Imagine, one morning, stepping from a rover on an exploratory mission, feeling a deep  nervous tension and excitement.  You focus in on the scripted tasks and procedures the next few minutes require.

You know that if your suit becomes compromised, your blood would alternately freeze/boil and you’d die almost instantly.  You know some little, unplanned problem can become a big problem.  Any sort of help/supply lines would be pretty much impossible, at least six months but at least a year in coming, and probably not coming at all.

Yet, here you are:

—————————

As posted: It looks like Gale Crater has its advantages.

Research papers here. A summary of some of what’s been found so far:

‘Research suggests habitable conditions in the Yellowknife Bay area may have persisted for millions to tens of millions of years. During that time rivers and lakes probably appeared and disappeared. Even when the surface was dry, the subsurface likely was wet, as indicated by mineral veins deposited by underground water into fractures in the rock. The thickness of observed and inferred tiers of rock layers provides the basis for estimating long duration, and the discovery of a mineral energy source for underground microbes favors habitability throughout.’

You can also watch a 12/05/13 press briefing from JPL discussing those papers above.  These rocks are much newer than the older wet period theorized.

They’re more focused on the search for organic carbon, now, within the environments they’ve discovered.

Via The Mars Science Laboratory At NASA: ”Mount Sharp’ On Mars Links Geology’s Past And Future’Via Youtube: ‘The Challenges Of Getting To Mars: Selecting A Landing Site

NASA Via Youtube: December 21st, 2012 Mars Curiosity Rover Report

NASA Via Youtube: ‘The Martians: Launching Curiosity To Mars’NASA Via Youtube: ‘Mars Science Laboratory (Curiosity Rover) Mission Animation

Why was Mt. Sharp chosen for the Curiosity Rover landing site, and what about those rounded stones that it photographed, indicative of long ago ankle to hip-deep water?  If the Martian surface is likely so full of perchlorates and life-hostile, irradiated soil, what are the chances of pockets of microbial life below ground?

The discussion later moves to Venus, Jovian moon Io, and the Chinese lander on the dark side of the moon in the final minutes:

Event Horizon discussion with Emily Lakdawalla.

Imagine sub-freezing temperatures and free radicals bombarding the near atmosphere-less Martian surface (oxidized and rusted red, barren), but below the Martian surface lurk big blocks of briny ice; ice with freezing cold, incredibly salty water around them and maybe just enough O2 to support some microbes.

Worth thinking about.

What are you doing with your imagination?

‘Due to the scarcity of O2 in the modern Martian atmosphere, Mars has been assumed to be incapable of producing environments with sufficiently large concentrations of O2 to support aerobic respiration. Here, we present a thermodynamic framework for the solubility of O2 in brines under Martian near-surface conditions. We find that modern Mars can support liquid environments with dissolved O2 values ranging from ~2.5 × 10−6 mol m−3 to 2 mol m−3 across the planet, with particularly high concentrations in polar regions because of lower temperatures at higher latitudes promoting O2 entry into brines’

 

A Few Brief Martian Links

Why was Mt. Sharp chosen for the Curiosity Rover landing site, and what about those rounded stones that it photographed, indicative of long ago ankle to hip-deep water?  If the Martian surface is likely so full of perchlorates and life-hostile, irradiated soil, what are the chances of pockets of microbial life below ground?

The discussion later moves to Venus, Jovian moon Io, and the Chinese lander on the dark side of the moon in the final minutes:

Event Horizon discussion with Emily Lakdawalla.


As posted:

Imagine sub-freezing temperatures and free radicals bombarding the near atmosphere-less Martian surface (oxidized and rusted red, barren), but below the Martian surface lurk big blocks of briny ice; ice with freezing cold, incredibly salty water around them and maybe just enough O2 to support some microbes.

Worth thinking about.

What are you doing with your imagination?

‘Due to the scarcity of O2 in the modern Martian atmosphere, Mars has been assumed to be incapable of producing environments with sufficiently large concentrations of O2 to support aerobic respiration. Here, we present a thermodynamic framework for the solubility of O2 in brines under Martian near-surface conditions. We find that modern Mars can support liquid environments with dissolved O2 values ranging from ~2.5 × 10−6 mol m−3 to 2 mol m−3 across the planet, with particularly high concentrations in polar regions because of lower temperatures at higher latitudes promoting O2 entry into brines’

Jordan Peterson And Slavoj Zizek-Some Weather And Space Links

Challenges to many post-Enlightenment radicals, true-believers and narrow ideologues continue apace.  Hopefully, colonizing the Arts & Sciences for reasons other than making good art and doing good science will not come so easy.

Who’s got the Truth?  Who’s got the better models?

Jordan Peterson & Slavoj Zizek will be debating on April 19th:

On this site, see: Adam Kirsch responds to Zizek’s responses.  Kirsch reviewed Zizek’s In Defense Of Lost Causes in a New Republic piece entitled ‘The Deadly Jester.’

Interesting quote from Roger Scruton here:

So, what is all this Nothing-ness about? ‘My view’, says Scruton, ‘is that what’s underlying all of this is a kind of nihilistic vision that masks itself as a moving toward the enlightened future, but never pauses to describe what that society will be like. It simply loses itself in negatives about the existing things – institutional relations like marriage, for instance – but never asks itself if those existing things are actually part of what human beings are. Always in Zizek there’s an assumption of the right to dismiss them as standing in the way of something else, but that something else turns out to be Nothing.’

On that note, keep living a good life and keep learning:

Via Eric Weinstein, Science On A Sphere has got to be a dream of all weather and map geeks, no matter their level of commitment:

High-fidelity photographic images and satellite loops give you snatches of the bigger picture.  Get enough data sets and processing power together to build a basic model of Earth, however, and and you can start mapping months of actual data over the model.  Then you can start doing the same for other planets.

Perhaps with the cheaper availability of AI modeling, costs will come down enough to allow localized and predictive weather observations and modeling.  Amateur weather geeks can start adding input channels and competitive, real-time knowledge which strengthen and/or challenge the big models in real-time.

Engage your visual cortex along with actual recorded weather data.  Choose a particular weather event from your own memory, and align it with this visual representation of the data on the macro-level:

You probably already knew: If you keep scrolling out of Google Maps from your lat/long (https://www.google.com/maps) in satellite view, you will eventually see a similar Earth model.  You can then choose other planets from a sidebar if you can’t afford $45K!

I’ve been enjoying Event Horizon lately; good questions and good answers from Astronomers and serious practitioners.  Subscribe!:

Via A Reader-Two Oumuamua Links

Via a reader:  Hey, I’m probably not even an amateur.

Oumuamua’s Geometry Could Be More Extreme Than Previously Inferred

Recently, a visitor from beyond our solar sytem passed pretty closely to Earth.

With the observed and limited data, Oumuamua was clearly anomalous.  It likely had a 10/1 length to width ratio and was reflecting a lot of light, data which suggests a wobbling oblong or something nearly pancake-shaped (perhaps containing iron or other metals because it’s more reflective of the red, longer wavelengths on the visible light spectrum and it’s got to be of durable enough material to be so thin while surviving the roughness of interstellar space).

Our solar system is a fairly flat disk which is moving in relation to other star systems, all of which are traveling very quickly relative to Oumuamua, which was relatively stationary to these other systems when it came in at an angle to ours; speeding up again on its way out (perhaps not due to outgassing).

Dr. Avi Loeb has been working on lightsails, or thinking about how a civilization might travel and explore space and/or create something like a message in a bottle.   Below, he is interviewed on Event Horizon.

His not-ruled-out hypothesis will probably attract some UFO and alien public interest, but it seems, in my limited understanding, that as an anomaly, this is a discussion with a first-rate astronomer performing an interesting exercise in taking past experience, current knowledge and conventional explanations to their limits in trying to creatively identify something new.

It’s a big universe out there after all, and we’re just starting to get some better tools with which to view and understand it:

Robert Zubrin At The New Atlantis-‘Colonizing Mars: A Critique Of The SpaceX Interplanetary Transport System’Stephen Hawking In Cosmos: Some Reasons Why We Should Continue Space Exploration